Graph Minors and Parameterized Algorithm Design
نویسنده
چکیده
The Graph Minors Theory, developed by Robertson and Seymour, has been one of the most influential mathematical theories in parameterized algorithm design. We present some of the basic algorithmic techniques and methods that emerged from this theory. We discuss its direct meta-algorithmic consequences, we present the algorithmic applications of core theorems such as the grid-exclusion theorem, and we give a brief description of the irrelevant vertex technique.
منابع مشابه
Bidimensionality and Parameterized Algorithms∗
We provide an exposition of the main results of the theory of bidimensionality in parameterized algorithm design. This theory applies to graph problems that are bidimensional in the sense that i) their solution value is not increasing when we take minors or contractions of the input graph and ii) their solution value for the (triangulated) (k × k)-grid graph grows as a quadratic function of k. ...
متن کامل10 th International Symposium on Parameterized and
We provide an exposition of the main results of the theory of bidimensionality in parameterizedalgorithm design. This theory applies to graph problems that are bidimensional in the sense thati) their solution value is not increasing when we take minors or contractions of the input graph andii) their solution value for the (triangulated) (k × k)-grid graph grows as a quadratic functi...
متن کاملFaster Parameterized Algorithms for Minor Containment
The theory of Graph Minors by Robertson and Seymour is one of the deepest and significant theories in modern Combinatorics. This theory has also a strong impact on the recent development of Algorithms, and several areas, like Parameterized Complexity, have roots in Graph Minors. Until very recently it was a common belief that Graph Minors Theory is mainly of theoretical importance. However, it ...
متن کاملAlgorithmic Graph Structure Theory
The Graph Minors project of Robertson and Seymour uncovered a very deep structural theory of graphs. This theory had several important consequences, among others, the proof of Wagner’s Conjecture. While the whole theory, presented in a series of 23 very dense papers, is notoriously difficult to understand, it has to be emphasized that these papers introduced several elementary concepts and tool...
متن کاملSubexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs
The well-known bidimensionality theory provides a method for designing fast, subexponentialtime parameterized algorithms for a vast number of NP-hard problems on sparse graph classes such as planar graphs, bounded genus graphs, or, more generally, graphs with a fixed excluded minor. However, in order to apply the bidimensionality framework the considered problem needs to fulfill a special densi...
متن کامل